Academic Heights Public School

Jungle Dhusar, Gorakhpur

Session 2017-18

Syllabus of Class - X, Subject - Maths

W. Days	Topics	Activity
24	UNIT I: NUMBER SYSTEMS	
	1. REAL NUMBERS	
	Euclid's division lemma, Fundamental Theorem of	One Project Pythagoras Theory
	Arithmetic – statements after reviewing work done	
	earlier and after illustrating and motivating 1,2 3 and 4	
	through examples, Proofs of results - irrationality of $\sqrt{2}$,	
	√3, √5, decimal Good Behaviour in expansions of	
	rational numbers in terms of terminating/ non-	
	terminating human interaction recurring decimals	
16	UNIT II: ALGEBRA	
	Zeros of a polynomial. Relationship between zeros and	
	coefficients of	
	quadratic polynomials. Statement and simple problems	
	on division	
	algorithm for polynomials with real coefficients.	
10	2. PAIR OF LINEAR EQUATIONS IN TWO VARIABLES	ļ!
	Pair of linear equations in two variables and their	
	graphical solution.	
	Geometric representation different possibilities 5	l
	Of Solutions/Inconsistency.	
	Algebraic conditions for number of solutions. Solution	
	Of a pair of infeat	
	substitution by elimination	
	and by cross multiplication method. Simple situational	
	Inrohlems must he	
	included. Simple problems on equations reducible to	<u> </u>
	linear equations may be included.	
	Periodic Test - 1	
24		
Z4		
	Definitions examples counter examples of similar	Basic Proportionalities theorem for a
	Itriangles	Itriangles
	1 (Prove) If a line is drawn parallel to one side of a	
	triangle to intersect the other two sides in distinct	
	points. the other two sides are divided in the same	
	ratio.	
	2. (Motivate) If a line divides two sides of a triangle in	
	the same ratio, the line is parallel to the third side.	
	3. (Motivate) If in two triangles, the corresponding	
	angles are equal, their corresponding sides are	
	proportional and the triangles are similar.	

	4. (Motivate) If the corresponding sides of two triangles		
	are proportional, their corresponding angles are equal		
	and the two triangles are similar.		
	5. (Motivate) If one angle of a triangle is equal to one		
	angle of another triangle and the sides including these		
	angles are proportional, the		
	two triangles are similar.		
	6. (Motivate) If a perpendicular is drawn from the		
	vertex of the right angle of a right triangle to the		
	hypotenuse, the triangles on each side of the		
	perpendicular are similar to the whole triangle and to		
	each other.		
	7. (Prove) The ratio of the areas of two similar triangles		
	is equal to the ratio of the squares on their		
	corresponding sides.		
	8. (Prove) In a right triangle, the square on the		
	hypotenuse is equal to the sum of the squares on the		
	other two sides.		
	9. (Prove) In a triangle, if the square on one side is		
	equal to sum of the squares on the other two sides, the		
	angles opposite to the first side is a right triangle.		
24			
	I rigonometric ratios of an acute angle of a right-angled		
	triangle.		
	Proof of order their existence (well defined); motivate		
	the ratios,		
	whichever are defined at 0° and 90°. Values (with		
	proofs) of the		
	between the ratios		
	Proof and applications of the identity $\sin_2 A + \cos_2 A = 1$		
	Only simple identities		
	to be given. Trigonometric ratios of complementary		
	angles.		
24	Trigonometrry		
	Height and Distance		
Half Yearly			

Principal/Director